Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Emerg Infect Dis ; 28(10): 2043-2050, 2022 10.
Article in English | MEDLINE | ID: mdl-36148905

ABSTRACT

Deletions of pfhrp2 and paralogue pfhrp3 (pfhrp2/3) genes threaten Plasmodium falciparum diagnosis by rapid diagnostic test. We examined 1,002 samples from suspected malaria patients in Djibouti City, Djibouti, to investigate pfhrp2/3 deletions. We performed assays for Plasmodium antigen carriage, pfhrp2/3 genotyping, and sequencing for 7 neutral microsatellites to assess relatedness. By PCR assay, 311 (31.0%) samples tested positive for P. falciparum infection, and 296 (95.2%) were successfully genotyped; 37 (12.5%) samples were pfhrp2+/pfhrp3+, 51 (17.2%) were pfhrp2+/pfhrp3-, 5 (1.7%) were pfhrp2-/pfhrp3+, and 203 (68.6%) were pfhrp2-/pfhrp3-. Histidine-rich protein 2/3 antigen concentrations were reduced with corresponding gene deletions. Djibouti P. falciparum is closely related to Ethiopia and Eritrea parasites (pairwise GST 0.68 [Ethiopia] and 0.77 [Eritrea]). P. falciparum with deletions in pfhrp2/3 genes were highly prevalent in Djibouti City in 2019-2020; they appear to have arisen de novo within the Horn of Africa and have not been imported.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Antigens, Protozoan/genetics , Diagnostic Tests, Routine , Djibouti/epidemiology , Ethiopia , Gene Deletion , Histidine/genetics , Humans , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
2.
Malar J ; 20(1): 398, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34641867

ABSTRACT

BACKGROUND: Due to the threat of emerging anti-malarial resistance, the World Health Organization recommends incorporating surveillance for molecular markers of anti-malarial resistance into routine therapeutic efficacy studies (TESs). In 2018, a TES of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) was conducted in Mozambique, and the prevalence of polymorphisms in the pfk13, pfcrt, and pfmdr1 genes associated with drug resistance was investigated. METHODS: Children aged 6-59 months were enrolled in four study sites. Blood was collected and dried on filter paper from participants who developed fever within 28 days of initial malaria treatment. All samples were first screened for Plasmodium falciparum using a multiplex real-time PCR assay, and polymorphisms in the pfk13, pfcrt, and pfmdr1 genes were investigated by Sanger sequencing. RESULTS: No pfk13 mutations, associated with artemisinin partial resistance, were observed. The only pfcrt haplotype observed was the wild type CVMNK (codons 72-76), associated with chloroquine sensitivity. Polymorphisms in pfmdr1 were only observed at codon 184, with the mutant 184F in 43/109 (39.4%) of the samples, wild type Y184 in 42/109 (38.5%), and mixed 184F/Y in 24/109 (22.0%). All samples possessed N86 and D1246 at these two codons. CONCLUSION: In 2018, no markers of artemisinin resistance were documented. Molecular surveillance should continue to monitor the prevalence of these markers to inform decisions on malaria treatment in Mozambique.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Polymorphism, Genetic/genetics , Antimalarials/pharmacology , Artemisinins/pharmacology , Child, Preschool , Drug Therapy, Combination , Female , Genetic Markers , Humans , Infant , Male , Mozambique , Plasmodium falciparum/isolation & purification
3.
Lancet Infect Dis ; 21(8): 1120-1128, 2021 08.
Article in English | MEDLINE | ID: mdl-33864801

ABSTRACT

BACKGROUND: Partial artemisinin resistance is suspected if delayed parasite clearance (ie, persistence of parasitaemia on day 3 after treatment initiation) is observed. Validated markers of artemisinin partial resistance in southeast Asia, Plasmodium falciparum kelch13 (Pfkelch13) R561H and P574L, have been reported in Rwanda but no association with parasite clearance has been observed. We aimed to establish the efficacy of artemether-lumefantrine and genetic characterisation of Pfkelch13 alleles and their association with treatment outcomes. METHODS: This open-label, single-arm, multicentre, therapeutic efficacy study was done in 2018 in three Rwandan sites: Masaka, Rukara, and Bugarama. Children aged 6-59 months with P falciparum monoinfection and fever were eligible and treated with a 3-day course of artemether-lumefantrine. Treatment response was monitored for 28 days using weekly microscopy screenings of blood samples for P falciparum. Mutations in Pfkelch13 and P falciparum multidrug resistance-1 (Pfmdr1) genes were characterised in parasites collected from enrolled participants. Analysis of flanking microsatellites surrounding Pfkelch13 was done to define the origins of the R561H mutations. The primary endpoint was PCR-corrected parasitological cure on day 28, as per WHO protocol. FINDINGS: 228 participants were enrolled and 224 (98·2%) reached the study endpoint. PCR-corrected efficacies were 97·0% (95% CI 88-100) in Masaka, 93·8% (85-98) in Rukara, and 97·2% (91-100) in Bugarama. Pfkelch13 R561H mutations were present in 28 (13%) of 218 pre-treatment samples and P574L mutations were present in two (1%) pre-treatment samples. 217 (90%) of the 240 Pfmdr1 haplotypes observed in the pretreatment samples, had either the NFD (N86Y, Y184F, D1246Y) or NYD haplotype. Eight (16%) of 51 participants in Masaka and 12 (15%) of 82 participants in Rukara were microscopically positive 3 days after treatment initiation, which was associated with pre-treatment presence of Pfkelch13 R561H in Masaka (p=0·0005). Genetic analysis of Pfkelch13 R561H mutations suggest their common ancestry and local origin in Rwanda. INTERPRETATION: We confirm evidence of emerging artemisinin partial resistance in Rwanda. Although artemether-lumefantrine remains efficacious, vigilance for decreasing efficacy, further characterisation of artemisinin partial resistance, and evaluation of additional antimalarials in Rwanda should be considered. FUNDING: The US President's Malaria Initiative. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Artemisinins/therapeutic use , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Animals , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Child, Preschool , Female , Genotype , Humans , Infant , Malaria, Falciparum/epidemiology , Male , Mutation, Missense , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Polymorphism, Genetic , Rwanda/epidemiology
4.
Malar J ; 17(1): 84, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29458380

ABSTRACT

BACKGROUND: Artemisinin-based combination therapy is the first-line anti-malarial treatment for uncomplicated Plasmodium falciparum infection in Angola. To date, the prevalence of polymorphisms in the pfk13 gene, associated with artemisinin resistance, and pfmdr1, associated with lumefantrine resistance, have not been systematically studied in Angola. METHODS: DNA was isolated from pretreatment and late treatment failure dried blood spots collected during the 2015 round of therapeutic efficacy studies in Benguela, Lunda Sul, and Zaire Provinces in Angola. The pfk13 propeller domain and pfmdr1 gene were sequenced and analysed for polymorphisms. Pfmdr1 copy number variation was assessed using a real-time PCR method. The association between pfmdr1 and pfk13 mutations and treatment failure was investigated. RESULTS: The majority of pretreatment (99%, 466/469) and all late treatment failure (100%, 50/50) samples were wild type for pfk13. Three of the pretreatment samples (1%) carried the A578S mutation commonly observed in Africa and not associated with artemisinin resistance. All 543 pretreatment and day of late treatment failure samples successfully analysed for pfmdr1 copy number variation carried one copy of pfmdr1. The NYD haplotype was the predominant pfmdr1 haplotype, present in 63% (308/491) of pretreatment samples, followed by NFD, which was present in 32% (157/491) of pretreatment samples. The pfmdr1 N86 allele was overrepresented in day of late treatment failure samples from participants receiving artemether-lumefantrine (p value 0.03). CONCLUSIONS: The pretreatment parasites in patients participating in therapeutic efficacy studies in 2015 in Angola's three sentinel sites showed genetic evidence of susceptibility to artemisinins, consistent with clinical outcome data showing greater than 99% day 3 clearance rates. The lack of increased pfmdr1 copy number is consistent with previous reports from sub-Saharan Africa. Although pfmdr1 NYD and NFD haplotypes were overrepresented in artemether-lumefantrine late treatment failure samples, their role as markers of resistance was unclear given that these haplotypes were also present in the majority of successfully treated patients in the artemether-lumefantrine treatment arms.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Biomarkers/metabolism , Drug Resistance , Lumefantrine/pharmacology , Malaria, Falciparum/prevention & control , Angola , Artemether, Lumefantrine Drug Combination/administration & dosage , Humans , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics
5.
Article in English | MEDLINE | ID: mdl-29378723

ABSTRACT

Artemisinin-based combination therapy (ACT) is the most effective and widely used treatment for uncomplicated Plasmodium falciparum malaria and is a cornerstone for malaria control and prevention globally. Resistance to artemisinin derivatives has been confirmed in the Greater Mekong Subregion (GMS) and manifests as slow parasite clearance in patients and reduced ring stage susceptibility to artemisinins in survival assays. The P. falciparumkelch13 gene mutations associated with artemisinin-resistant parasites are now widespread in the GMS. We genotyped 277 samples collected during an observational study from 2012 to 2016 from eight provinces in Thailand to identify P. falciparum kelch13 mutations. The results were combined with previously reported genotyping results from Thailand to construct a map illustrating the evolution of P. falciparum kelch13 mutations from 2007 to 2016 in that country. Different mutant alleles were found in strains with different geographical origins. The artemisinin resistance-conferring Y493H and R539T mutations were detected mainly in eastern Thailand (bordering Cambodia), while P574L was found only in western Thailand and R561H only in northwestern Thailand. The C580Y mutation was found across the entire country and was nearing fixation along the Thai-Cambodia border. Overall, the prevalence of artemisinin resistance mutations increased over the last 10 years across Thailand, especially along the Thai-Cambodia border. Molecular surveillance and therapeutic efficacy monitoring should be intensified in the region to further assess the extent and spread of artemisinin resistance.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Mutation/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Genotype , Humans , Thailand
6.
PLoS One ; 12(3): e0171150, 2017.
Article in English | MEDLINE | ID: mdl-28301474

ABSTRACT

More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region.


Subject(s)
Antigens, Protozoan/genetics , Gene Deletion , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Animals , Bolivia , Brazil , Humans , Malaria, Falciparum/parasitology
7.
Sci Rep ; 6: 36808, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27827432

ABSTRACT

Isothermal nucleic acid amplification assays such as the loop mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to amplify the DNA. To further facilitate the use of LAMP assays in remote settings, simpler sample preparation methods and lyophilized reagents are required. The performance of a commercial malaria LAMP assay (Illumigene Malaria LAMP) was evaluated using two sample preparation workflows (simple filtration prep (SFP)) and gravity-driven filtration prep (GFP)) and pre-dispensed lyophilized reagents. Laboratory and clinical samples were tested in a field laboratory in Senegal and the results independently confirmed in a reference laboratory in the U.S.A. The Illumigene Malaria LAMP assay was easily implemented in the clinical laboratory and gave similar results to a real-time PCR reference test with limits of detection of ≤2.0 parasites/µl depending on the sample preparation method used. This assay reliably detected Plasmodium sp. parasites in a simple low-tech format, providing a much needed alternative to the more complex molecular tests for malaria diagnosis.


Subject(s)
Malaria/diagnosis , Molecular Diagnostic Techniques/methods , Plasmodium/genetics , DNA, Protozoan/genetics , Humans , Malaria/parasitology , Nucleic Acid Amplification Techniques , Sensitivity and Specificity
8.
Antimicrob Agents Chemother ; 59(12): 7540-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26392510

ABSTRACT

Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya.


Subject(s)
Antimalarials/therapeutic use , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Polymorphism, Genetic , Alleles , Amodiaquine/therapeutic use , Animals , Artemisinins/therapeutic use , Child , Child, Preschool , Chloroquine/therapeutic use , Drug Resistance/drug effects , Epidemiological Monitoring , Ethanolamines/therapeutic use , Fluorenes/therapeutic use , Gene Dosage , Gene Expression , Genotype , Humans , Kenya/epidemiology , Lumefantrine , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Mefloquine/therapeutic use , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Parasitic Sensitivity Tests , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
9.
PLoS One ; 10(8): e0136099, 2015.
Article in English | MEDLINE | ID: mdl-26292024

ABSTRACT

Plasmodium falciparum resistance to artemisinin has emerged in the Greater Mekong Subregion and now poses a threat to malaria control and prevention. Recent work has identified mutations in the kelch propeller domain of the P. falciparum K13 gene to be associated artemisinin resistance as defined by delayed parasite clearance and ex vivo ring stage survival assays. Species specific primers for the two most prevalent human malaria species, P. falciparum and P. vivax, were designed and tested on multiple parasite isolates including human, rodent, and non- humans primate Plasmodium species. The new protocol described here using the species specific primers only amplified their respective species, P. falciparum and P. vivax, and did not cross react with any of the other human malaria Plasmodium species. We provide an improved species specific PCR and sequencing protocol that could be effectively used in areas where both P. falciparum and P. vivax are circulating. To design this improved protocol, the kelch gene was analyzed and compared among different species of Plasmodium. The kelch propeller domain was found to be highly conserved across the mammalian Plasmodium species.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Genes, Protozoan/genetics , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Animals , Drug Resistance/genetics , Humans , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects , Polymerase Chain Reaction , Sequence Alignment , Species Specificity
11.
PLoS One ; 10(5): e0126805, 2015.
Article in English | MEDLINE | ID: mdl-25978499

ABSTRACT

Guyana and Suriname have made important progress in reducing the burden of malaria. While both countries use microscopy as the primary tool for clinical diagnosis, malaria rapid diagnostic tests (RDTs) are useful in remote areas of the interior where laboratory support may be limited or unavailable. Recent reports indicate that histidine-rich protein 2 (PfHRP2)-based diagnostic tests specific for detection of P. falciparum may provide false negative results in some parts of South America due to the emergence of P. falciparum parasites that lack the pfhrp2 gene, and thus produce no PfHRP2 antigen. Pfhrp2 and pfhrp3 genes were amplified in parasite isolates collected from Guyana and Suriname to determine if there were circulating isolates with deletions in these genes. Pfhrp3 deletions were monitored because some monoclonal antibodies utilized in PfHRP2-based RDTs cross-react with the PfHRP3 protein. We found that all 97 isolates from Guyana that met the inclusion criteria were both pfhrp2- and pfhrp3-positive. In Suriname (N = 78), 14% of the samples tested were pfhrp2-negative while 4% were pfhrp3-negative. Furthermore, analysis of the genomic region proximal to pfhrp2 and pfhrp3 revealed that genomic deletions extended to the flanking genes. We also investigated the population substructure of the isolates collected to determine if the parasites that had deletions of pfhrp2 and pfhrp3 belonged to any genetic subtypes. Cluster analysis revealed that there was no predominant P. falciparum population substructure among the isolates from either country, an indication of genetic admixture among the parasite populations. Furthermore, the pfhrp2-deleted parasites from Suriname did not appear to share a single, unique genetic background.


Subject(s)
Antigens, Protozoan/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Diagnostic Tests, Routine/methods , Gene Deletion , Guyana , Humans , Suriname
12.
Antimicrob Agents Chemother ; 59(7): 3995-4002, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25896703

ABSTRACT

The molecular basis of sulfadoxine-pyrimethamine (SP) resistance lies in a combination of single-nucleotide polymorphisms (SNPs) in two genes coding for Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and P. falciparum dihydropteroate synthase (Pfdhps), targeted by pyrimethamine and sulfadoxine, respectively. The continued use of SP for intermittent preventive treatment in pregnant women in many African countries, despite SP's discontinuation as a first-line antimalarial treatment option due to high levels of drug resistance, may further increase the prevalence of SP-resistant parasites and/or lead to the selection of new mutations. An antimalarial drug resistance surveillance study was conducted in western Kenya between 2010 and 2013. A total of 203 clinical samples from children with uncomplicated malaria were genotyped for SNPs associated with SP resistance. The prevalence of the triple-mutant Pfdhfr C50 I51R59N108: I164 genotype and the double-mutant Pfdhps S436 G437E540: A581A613 genotype was high. Two triple-mutant Pfdhps genotypes, S436 G437E540G581: A613 and H436G437E540: A581A613, were found, with the latter thus far being uniquely found in western Kenya. The prevalence of the S436 G437E540G581: A613 genotype was low. However, a steady increase in the prevalence of the Pfdhps triple-mutant H436G437E540: A581A613 genotype has been observed since its appearance in early 2000. Isolates with these genotypes shared substantial microsatellite haplotypes with the most common double-mutant allele, suggesting that this triple-mutant allele may have evolved locally. Overall, these findings show that the prevalence of the H436G437E540: A581A613 triple mutant may be increasing in this population and could compromise the efficacy of SP for intermittent preventive treatment in pregnant women if it increases the resistance threshold further.


Subject(s)
Antimalarials/pharmacology , Dihydropteroate Synthase/genetics , Drug Resistance/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Adult , Child , Child, Preschool , Drug Combinations , Female , Genotype , Haplotypes , Humans , Kenya/epidemiology , Microsatellite Repeats , Mutation/genetics , Polymorphism, Single Nucleotide , Pregnancy , Prevalence , Tetrahydrofolate Dehydrogenase/genetics , Young Adult
14.
PLoS Pathog ; 11(4): e1004789, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25836766

ABSTRACT

The recent emergence of artemisinin resistance in the Greater Mekong Subregion poses a major threat to the global effort to control malaria. Tracking the spread and evolution of artemisinin-resistant parasites is critical in aiding efforts to contain the spread of resistance. A total of 417 patient samples from the year 2007, collected during malaria surveillance studies across ten provinces in Thailand, were genotyped for the candidate Plasmodium falciparum molecular marker of artemisinin resistance K13. Parasite genotypes were examined for K13 propeller mutations associated with artemisinin resistance, signatures of positive selection, and for evidence of whether artemisinin-resistant alleles arose independently across Thailand. A total of seven K13 mutant alleles were found (N458Y, R539T, E556D, P574L, R575K, C580Y, S621F). Notably, the R575K and S621F mutations have previously not been reported in Thailand. The most prevalent artemisinin resistance-associated K13 mutation, C580Y, carried two distinct haplotype profiles that were separated based on geography, along the Thai-Cambodia and Thai-Myanmar borders. It appears these two haplotypes may have independent evolutionary origins. In summary, parasites with K13 propeller mutations associated with artemisinin resistance were widely present along the Thai-Cambodia and Thai-Myanmar borders prior to the implementation of the artemisinin resistance containment project in the region.


Subject(s)
Antigens, Bacterial/genetics , Antigens, Surface/genetics , Containment of Biohazards , Drug Resistance, Microbial/genetics , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Alleles , Anti-Infective Agents , Artemisinins , Containment of Biohazards/methods , Epidemiological Monitoring , Genotype , Humans , Molecular Sequence Data , Mutation , Polymerase Chain Reaction , Thailand/epidemiology
15.
Malar J ; 14: 19, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25604310

ABSTRACT

BACKGROUND: Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites. METHODS: Sixty-eight samples used in this study, which were obtained from a previous chloroquine efficacy study, were utilized in the analysis. All samples were genotyped for pfhrp2, pfhrp3 and flanking genes by PCR. The samples were then genotyped for seven neutral microsatellites in order to determine the parasite population structure in Puerto Lempira at the time of sample collection. RESULTS: It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8. However, only 50% of the samples were positive for pfhrp3 and its neighboring genes while the rest were either pfhrp3-negative only or had deleted a combination of pfhrp3 and its neighbouring genes on chromosome 13. Population structure analysis predicted that there are at least two distinct parasite population clusters in this sample population. It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other. CONCLUSION: The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however continued monitoring of parasite population will be useful to detect any parasites with deletions of pfhrp2.


Subject(s)
Antigens, Protozoan/genetics , Diagnostic Errors , Diagnostic Tests, Routine/methods , Gene Deletion , Malaria, Falciparum/diagnosis , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genotype , Honduras , Humans , Infant , Male , Microsatellite Repeats , Middle Aged , Plasmodium falciparum/classification , Plasmodium falciparum/isolation & purification , Polymerase Chain Reaction , Prevalence , Retrospective Studies , Young Adult
16.
Antimicrob Agents Chemother ; 59(1): 437-43, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25367912

ABSTRACT

The development of resistance to antimalarials is a major challenge for global malaria control. Artemisinin-based combination therapies, the newest class of antimalarials, are used worldwide but there have been reports of artemisinin resistance in Southeast Asia. In February through May 2013, we conducted open-label, nonrandomized therapeutic efficacy studies of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) in Zaire and Uíge Provinces in northern Angola. The parasitological and clinical responses to treatment in children with uncomplicated Plasmodium falciparum monoinfection were measured over 28 days, and the main outcome was a PCR-corrected adequate clinical and parasitological response (ACPR) proportion on day 28. Parasites from treatment failures were analyzed for the presence of putative molecular markers of resistance to lumefantrine and artemisinins, including the recently identified mutations in the K13 propeller gene. In the 320 children finishing the study, 25 treatment failures were observed: 24 in the AL arms and 1 in the DP arm. The PCR-corrected ACPR proportions on day 28 for AL were 88% (95% confidence interval [CI], 78 to 95%) in Zaire and 97% (91 to 100%) in Uíge. For DP, the proportions were 100% (95 to 100%) in Zaire, and 100% (96 to 100%) in Uíge. None of the treatment failures had molecular evidence of artemisinin resistance. In contrast, 91% of AL late-treatment failures had markers associated with lumefantrine resistance on the day of failure. The absence of molecular markers for artemisinin resistance and the observed efficacies of both drug combinations suggest no evidence of artemisinin resistance in northern Angola. There is evidence of increased lumefantrine resistance in Zaire, which should continue to be monitored.


Subject(s)
Artemisinins/therapeutic use , Ethanolamines/therapeutic use , Fluorenes/therapeutic use , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Quinolines/therapeutic use , Angola , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination , Child , Drug Combinations , Drug Resistance/genetics , Female , Humans , Malaria, Falciparum/parasitology , Male , Plasmodium falciparum/genetics , Treatment Failure
17.
Malar J ; 13: 462, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25428550

ABSTRACT

BACKGROUND: Recently, a real-time PCR assay known as photo-induced electron transfer (PET)-PCR which relies on self-quenching primers for the detection of Plasmodium spp. and Plasmodium falciparum was described. PET-PCR assay was found to be robust, and easier to use when compared to currently available real-time PCR methods. The potential of PET-PCR for molecular detection of malaria parasites in a nationwide malaria community survey in Haiti was investigated. METHODS: DNA from the dried blood spots was extracted using QIAGEN methodology. All 2,989 samples were screened using the PET-PCR assay in duplicate. Samples with a cycle threshold (CT) of 40 or less were scored as positive. A subset of the total samples (534) was retested using a nested PCR assay for confirmation. In addition, these same samples were also tested using a TaqMan-based real-time PCR assay. RESULTS: A total of 12 out of the 2,989 samples screened (0.4%) were found to be positive by PET-PCR (mean CT value of 35.7). These same samples were also found to be positive by the nested and TaqMan-based methods. The nested PCR detected an additional positive sample in a subset of 534 samples that was not detected by either PET-PCR or TaqMan-based PCR method. CONCLUSION: While the nested PCR was found to be slightly more sensitive than the PET-PCR, it is not ideal for high throughput screening of samples. Given the ease of use and lower cost than the nested PCR, the PET-PCR provides an alternative assay for the rapid screening of a large number of samples in laboratory settings.


Subject(s)
Epidemiological Monitoring , Malaria/diagnosis , Molecular Diagnostic Techniques/methods , Polymerase Chain Reaction/methods , Blood/parasitology , DNA, Protozoan/blood , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , Haiti , Humans , Mass Screening/methods
18.
Malar J ; 12: 344, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24060234

ABSTRACT

BACKGROUND: Malaria elimination is being pursued in five of seven Central American countries. Military personnel returning from peacekeeping missions in sub-Saharan Africa could import chloroquine-resistant Plasmodium falciparum, posing a threat to elimination and to the continued efficacy of first-line chloroquine (CQ) treatment in these countries. This report describes the importation of P. falciparum from among 150 Guatemalan army special forces and support staff who spent ten months on a United Nations' peacekeeping mission in the Democratic Republic of the Congo (DRC) in 2010. METHODS: Investigators reviewed patients' medical charts and interviewed members of the contingent to identify malaria cases and risk factors for malaria acquisition. Clinical specimens were tested for malaria; isolated parasites were characterized molecularly for CQ resistance. RESULTS: Investigators identified 12 cases (8%) of laboratory-confirmed P. falciparum infection within the contingent; one case was from a soldier infected with a CQ-resistant pfcrt genotype resulting in his death. None of the contingent used an insecticide-treated bed net (ITN) or completely adhered to malaria chemoprophylaxis while in the DRC. CONCLUSION: This report highlights the need to promote use of malaria prevention measures, in particular ITNs and chemoprophylaxis, among peacekeepers stationed in malaria-endemic areas. Countries attempting to eliminate malaria should consider appropriate methods to screen peacekeepers returning from endemic areas for malaria infections. Cases of malaria in travellers, immigrants and soldiers returning to Central America from countries with CQ-resistant malaria should be assumed to be carry resistant parasites and receive appropriate anti-malarial therapy to prevent severe disease and death.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Malaria, Falciparum/diagnosis , Military Personnel , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Adult , Democratic Republic of the Congo , Drug Resistance , Guatemala , Humans , Malaria, Falciparum/parasitology , Male , Middle Aged , Travel , Young Adult
19.
Am J Trop Med Hyg ; 88(5): 850-4, 2013 May.
Article in English | MEDLINE | ID: mdl-23458957

ABSTRACT

Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization-World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras.


Subject(s)
Antimalarials/therapeutic use , Chloroquine/therapeutic use , Malaria, Falciparum/drug therapy , Membrane Transport Proteins/genetics , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Adolescent , Adult , Antimalarials/administration & dosage , Child , Child, Preschool , Chloroquine/administration & dosage , Female , Genotype , Honduras , Humans , Infant , Malaria, Falciparum/parasitology , Male , Middle Aged , Plasmodium falciparum/genetics , Treatment Outcome , Young Adult
20.
PLoS One ; 7(2): e31848, 2012.
Article in English | MEDLINE | ID: mdl-22363751

ABSTRACT

BACKGROUND: Recent studies in Southeast Asia have demonstrated substantial zoonotic transmission of Plasmodium knowlesi to humans. Microscopically, P. knowlesi exhibits several stage-dependent morphological similarities to P. malariae and P. falciparum. These similarities often lead to misdiagnosis of P. knowlesi as either P. malariae or P. falciparum and PCR-based molecular diagnostic tests are required to accurately detect P. knowlesi in humans. The most commonly used PCR test has been found to give false positive results, especially with a proportion of P. vivax isolates. To address the need for more sensitive and specific diagnostic tests for the accurate diagnosis of P. knowlesi, we report development of a new single-step PCR assay that uses novel genomic targets to accurately detect this infection. METHODOLOGY AND SIGNIFICANT FINDINGS: We have developed a bioinformatics approach to search the available malaria parasite genome database for the identification of suitable DNA sequences relevant for molecular diagnostic tests. Using this approach, we have identified multi-copy DNA sequences distributed in the P. knowlesi genome. We designed and tested several novel primers specific to new target sequences in a single-tube, non-nested PCR assay and identified one set of primers that accurately detects P. knowlesi. We show that this primer set has 100% specificity for the detection of P. knowlesi using three different strains (Nuri, H, and Hackeri), and one human case of malaria caused by P. knowlesi. This test did not show cross reactivity with any of the four human malaria parasite species including 11 different strains of P. vivax as well as 5 additional species of simian malaria parasites. CONCLUSIONS: The new PCR assay based on novel P. knowlesi genomic sequence targets was able to accurately detect P. knowlesi. Additional laboratory and field-based testing of this assay will be necessary to further validate its utility for clinical diagnosis of P. knowlesi.


Subject(s)
Biological Assay/methods , Malaria/parasitology , Parasites/genetics , Plasmodium knowlesi/genetics , Plasmodium knowlesi/isolation & purification , Polymerase Chain Reaction/methods , Zoonoses/parasitology , Animals , Base Sequence , Cross Reactions/immunology , DNA Primers/metabolism , Genome, Protozoan/genetics , Haplorhini/parasitology , Humans , Limit of Detection , Parasites/isolation & purification , Plasmodium vivax/genetics , RNA, Ribosomal, 18S/genetics , Sensitivity and Specificity , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...